If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10p^2+18p+8=0
a = 10; b = 18; c = +8;
Δ = b2-4ac
Δ = 182-4·10·8
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2}{2*10}=\frac{-20}{20} =-1 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2}{2*10}=\frac{-16}{20} =-4/5 $
| 6=15m=7 | | 4+4+x=11 | | 4*x=102 | | 55=4u+43 | | 5(x-7)+4=5x-31 | | √2x-12=4 | | -8=v/7+13 | | 2x+(4x-12)=5x-4 | | 8.4o-6.8=14.2=6.3o | | x/12=19-3x | | 6x-57x=4 | | 12(x-1/5)=60 | | 7x+(14+3)=73 | | -70=6x-76 | | 5m-5=12m-9 | | 6y+3+9y=-27 | | 2x/6=3 | | 24-2x+5x^2=0 | | 128=8(2)^t | | 8k-4=3k-10 | | 3(-5x)=-2(7x+6) | | 16+5p=10 | | 90=4g+18 | | 5(b+1)=25 | | 5x-11=11x-7 | | 0.2x+x=540000000 | | 4=w20 | | 3(w-64)=12 | | 4.3x-6.2=6.7 | | 4+4x=76 | | 4+4x=78 | | 3x+15=7x-20 |